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Abstract

In most implementations of hidden Markov models (HMMs) a state is
assumed to be a stationary random sequence of observation vectors
whose mean and covariance are estimated. Successive observations in
a state are assumed to be independent and identically distributed.
These assumptions are reasonable when each state represents a short
segment of the speech signal. When states represent longer portions of
the signal (e.g. phonemes, diphones, etc.) both assumptions are
inaccurate. Recently, some attempts have been made to incorporate
correlations between successive observations in a state. But to our
knowledge, non-stationarity has not been dealt with. We propose an
alternative representation in which a state of an HMM is defined as a
template, i.e. a “typical” sequence of observations. The template for a
state is derived from an ensemble of segments corresponding to that
state. In our present implementation, the observations are 11th-order
cepstrum vectors plus energy, states represent diphones and ensembles
of the diphones are obtained from a hand-labeled speaker-dependent
database of 2000 sentences spoken fluently. The probability of a test
sequence being generated in a given state is obtained by time-warping
the test utterance to the template, and assuming the differences
between the corresponding observations to have a joint distribution.
Tests on 50 sentences (outside the training set) indicate a correct
recognition rate for phonemes of about 70%.

1. Introduction

Consider a Markov chain with N states, =|q,.4,,...,4,). and associated transition
probability matrix 4 =la,, 1 <i,j < N]. If S, denotes the state of the Markov chain at time
instant k, then by definition a,=prob(S,,,=¢|S,=¢). A hidden Markov model
{HMM) based on this Markov chain generates a random sequence of observation
vectors o,, o,, ..., 0, ..., whose statistical properties change as the state of the
underlying Markov chain changes. In order to clarify our notation, we show an
illustrative example of observations generated by an HMM, in Fig. 1. The index of Sand
o is the running time index. The index of g indicates the particular choice from the set ¢J.
Thus, the Markov chain stayed in the state g, for the first nine time instants. During this
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Figure 1. An illustration of observations generated by a hidden Markov model.

time interval, the sequence of observations o, 0,, . . ., 0, was generated with a probability
distribution appropriate to the state ¢,, etc.

In almost all applications of HMMs to speech recognition, the probability distribu-
tion of the observation o,, generated at time instant k, is assumed to depend only on the
state S,eQ, in which it is generated. Hence, the observations generated in any given state
are independent and identically distributed (i.i.d.). Thus, if the sequence of observations
O=[0,0,,;,---,0,, r_,] is generated in some state g (i.e. if §,=8,,,=...=8,,,_,=g), then
the assumption is that the probability of that sequence has the form:

t+T-1

PO)= 1] plo,ig). (0

k=1

The state-dependent probability distribution p(o|g) can take a variety of forms. If the
observations are p-dimensional vectors of continuously distributed components, the
distribution is usually assumed to be a p-dimensional Gaussian distribution (or a
mixture of such distributions).

Some more general models have been considered in the literature (although not as
widely used). Thus in Bahl, Jelinek and Mercer (1983), o, is assumed to depend on S, as
well as on the previous state, S,_,. In Wellekens (1987), o, is allowed to depend on S,
S,_, and o,_,, i.e. on the previous observation as well.

Even with these generalizations, a sequence of observations generated in a given state
is a sepment of a stationary time-discrete random process. In certain situations (e.g. for a
state representing the middle portion of a steady vowel), this assumption of stationarity
is reasonable. If, however, the state is to represent a plosive, or a long segment of speech
(longer than 30 or 40 msec, say) the assumption is clearly invalid. To the best of our
knowledge, no one has considered HMMs in which the states are non-stationary, i.c. in
which the probability of an observation sequence depends explicitly on the time index, .
It is this extension that is the subject of the present paper.

Our motivation for studying such a model comes from the application of HMMs to
speech recognition in terms of sub-word units. Such HMMs are of interest in large-
vocabulary recognition, as well as in other applications where a decoding in terms of
sub-word units is desirable. Specifically, consider the HMM “phonetic decoder”
presented by Levinson (1986, 1987), in which each state represents a (variable-duration)
phone. With this choice of sub-word units, the model has about 50 states, each specified
by a probability density for the duration, and a probability density for the observations.
Successive observations in a state are assumed, as above, to be i.i.d. Lel us consider the
problem faced by this model in representing the spoken sentence “T have a feeling”
whose spectrogram is shown in Fig. 2. Shown below the spectrogram is an approximate
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Figure 2. A spectrogram of the sentence “‘T have a feeling”. Notice, for
example, the non-stationarity of the vowel (i). (See Table I for the definition of
the phonetic symbals.)

phonetic transcription. It is clear that if the phone [i], say, is represented by a state in the
HMM, that state must be non-stationary. (In fluent speech such non-stationary states
are the rule, and “steady’ states the rare exception.) To represent such a state by time-
averaged statistical properties is a gross approximation. Another unsatisfactory feature
is that because of the i.i.d. assumption, the probability assigned to a set of observations
is independent of the order in which the observations occur. Thus, for instance, reversing
the direction of the formant transitions leaves the probability unchanged.

The way this non-stationarity has been dealt with in the past is by representing the
transient state as a concatenation of two or more sub-states, Thus, the non-stationary
state is approximated by a sequence of piecewise stationary states. In principle, any
transient state can be approximated this way by a sufficiently fine subdivision, However,
such subdivision cannot model the statistical dependence. 1f a long sequence of
dependent observations is supposed to be generated by a chain of sub-states, then the
dependence extends over all those sub-states.
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We propose an alternative point of view in which the entire sub-word unit is regarded
as a single non-stationary state. Qur representation combines features of dynamic time
warping (DTW) and HMM. We define a state by a fixed length template, i.e. a “typical”
sequence of observations. The template for each state is derived from a labeled database,
much like a word template in a DTW word recognizer. To compute the probability of
generating a test sequence in a given state the test sequence is first time-warped to the
template. This warped sequence is assumed to be drawn from a distribution whose mean
is the template. The vector differences, ¢,. between the aligned observations are assurned
to have a joint Gaussian distribution. This representation can handle non-stationarity as
well as statistical dependence of observation sequences generated in the state. For the
present, we have assumed the deviations g, to be uncorrelated, so that the covariance
matrix is block diagonal. Note, however, that the template specifies a non-stationary
mean; also we allow the covariance matrix to be time-varying. A complete description of
the way in which we estimate the statistical properties for each state is given in the next
section.

A moment’s reflection shows that a diphone is the smaliest sub-word unit for which
such an HMM with non-stationary states makes sense. This is because of co-articula-
tion. The spectral trajectory of, say, the vowel [a] is quite different in the CV syllable /bo/
from that in the syllable /go/, as shown in Fig. 3. A similar observation can be made with
respect to the effect of right context. Clearly, a model for the phoneme la] derived from
occurrences of [a] in all contexts would be noisy due to co-articulation. Even if several
models were estimated, depending on the left (right) context, the right (left) half of the
model would still be noisy. From the very outset, therefore, we consider states to
represent diphones. By defining a diphone from the midpoint of the first phoneme to the
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Figure 3. Example of variation of the vowel {a] due to co-articulation.
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midpoint of the second, we minimize the effect of co-articulation due to both the right
and the left context. (It is, of course, possible to consider even more complicated sub-
word units. However, we have not done that.)

To the best of our knowledge, HMMSs with non-stationary states have not been
proposed in the literature so far.! However, representation of phones as sequences of
observations, or stochastic segments, has been proposed recently by Roucos and
Dunham (1987) and Ostendorf and Roukos (1989). There are several crucial differences
between their approach and ours. The first major difference is, of course, that unlike our
implementation, they do not consider an HMM framework for the segments. Thus, the
probability of a segment is independent of the preceding segment. A second important
difference is in the choice of sub-word units. Insicad of diphones their implementation
uses phones. As mentioned in the preceding paragraph, the diphone is the smallest unit
for which we expect to see significant advantage of this approach. Also, the choice of
diphone as the unit imposes a structure on the transition probability matrix, which can
be used to advantage (see Section 2.4). The third difference is in the method of alignment
of test segments to templates. We use dynamic time warping, while they use trace
segmentation or linear time warping, to compensate for variability in speaking rate. As is
well known, variations in speaking rate have a much larger effect on the durations of
fricatives and steady portions of vowels than on the durations of transient portions and
plosives. In general, therefore, linear warping is inferior to DTW, because it scales these
variations uniformly.

The rest of the paper is organized as follows: in the next section we give a description
of our proposed HMM with non-stationary states; in Section 3, we present the results of
a preliminary recognition experiment using such a model; in Section 4, we discuss
various ways in which the current model should be modified and extended.

2. Description of the HMM

The structure of our HMM is similar to that of the variable duration HMM described by
Levinson (1986). The main difference is, of course, in the definition of a state, and in the
manner in which a probability is assigned to a sequence generated in a given state.

As mentioned in the Introduction, we have chosen the states to be diphones.
Assuming there are about 50 phonemes in English, the upper bound on the number of
states, N, is about 2500. In practice, N= 1000 should suffice (e.g. Lee, er al., 1990).

The dwell time in a state of a conventional HMM is exponentially distributed. As this
is not, in general, a good approximation to the duration distribution, we replace the
underlying Markov chain by a semi-Markov chain, as in Levinson (1986). Thus, the
N x N state transition matrix 4 is constrained to have its diagonal elements a,= 0, for all
i, and the dwell time in a state is governed by a state-dependent probability distribution
of durations.

The definition of a state is in terms of a template {or typical sequence of observations)
and a probability distribution of the deviations from the template. We turn now to the
procedures by which the templates, the probability distributions and the state transition
probabilities are determined. We begin with a description of the database used for
traiming.

! A reviewer points out that & paper in press (Li Deng) also deals with non-stationarity of states in an HMM.
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2.1. Database and analysis conditions

To train the HMM outlined in the previous section, we used a database supplied to us by
J.P. Olive. This database, which will be described in detail in Section 3, consists of
speech sentences spoken fluently by one male speaker. A large part of this database has
been meticulously hand labeled by Olive, so as to indicate, on the speech waveform, the
beginning, middle and end points of phonemes. The set of phonemes, and the symbols
used to represent them are shown in Table I. From the labeled phonemes it was a simiple
matter to collect an ensemble of all occurrences of any selected diphone, where we define
adiphone p, p, to be the waveform from the middle of the first phoneme p, to the middie
of the second phoneme p,.

The speech was recorded in a studio, and digitized to 16-bit samples at a sampling rate
of 8000 samples/s. An LPC-based cepstrum analysis was performed on cach sentence in
the database. The LPC order was 12; the order of the cepstrum vectors obtained from
these LPC vectors was 11. The window length was 30 ms, and the overlap between
successive windows was 10 ms, The observation vectors {corresponding to the o, of Fig.
1) in our study are 12-dimensional vectors comprised of the 11-dimensional cepstrum
vectors, plus one component representing short-term energy, computed over the 30 ms
windows.? A token for the diphone p, p, is the sequence of observation vectors located
between the midpoints of the phonemes p, and p,. (For speaker-independent recognition
the cepstrum vector is often liftered. This reduces the varability due to the tilt in the
spectrum of the glottal excitation or of the transmission medium. However, for the
speaker-dependent case under study here, we found in a preliminary study that liftering
does not help. So we have not used a lifter in this study.)

Tasii 1. Set of phonemes: symbols and examples

Symbol Example Symbol Exampie Symbol Example
£ bet 1 led m mom

2 bought r red n nun

a cot w wet i} sing

u boot y yet p pop

EL bird h hay t tot

ar bite $ sister k kick

& bait J shoe P p closure
a* now z Z00 t” t closure
] schwa 3 measure k- k closure
I bit ¢ church b bob

® bat M judge d dad

A butt o thief g gag

§] book 3 they b~ b closure
oY boy f fief d- d closure
i beat v VErve g g closure
oY boat

2In one of the experiments (see Section 3.2) the energy was averaged over [0 ms windows.
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2.2. Derivation of the templates

In order not to clutter the notation, we will describe the procedure for some selected state
g. The same procedure is followed for every state. Let O, 1 i</, be the I observation
sequences comprising the ensemble of tokens found in the database, for the selected
state, g. Let T, be the length of O/, i.e. the number of observation vectors in 0. Let
D(0',0) be the distance (to be defined shortly) between OF and (. Then, following the
modified £-means method (Wilpon & Rabiner, 19835), we define the template for the state
¢ as the observation sequence whose cumulative distance from all other sequences in the
ensemble is a minimum, i.e. the sequence O such that:

E’; D{0,0)H< Z]: D(0/,0%, forallj. 2)

i=1 i=1

In the unlikely event that several sequences have this property, any of them may be
arbitrarily selected to be the template.

We have used the term “distance” for the function D in Equation (2) in the loose sense
in which it is used in the speech recognition literature, Indeed, for the problem at hand,
no useful function that is a true metric has ever been proposed. The reason is that
although all the observation vectors have the same dimension, variable-length sequences
of these vectors have variable dimension. Distance metrics may be defined for such sets,
but they tend to be artificial and not very useful for speech signals. Fortunately, it is not
necessary for D to be a true metric. Tt need only be some reasonable measure of
dissimilarity of the two sequences of vectors.

We define the distance D between sequences as the one used in the DTW method of
speech recognition. As a first step towards defining D, we need to define the distance
d(a,b), between any two vectors, a and b. When the observations are cepstrum vectors, a
suitable definition for 4 is:

d(ab)=(a—b)’T '(a,b). 3)

Here ’ denotes vector transpoese, and X is a diagonal matrix whose ith diagonal entry is
the variance of the ith cepstral coefficient.

In terms of the distance 4, we can define the distance between O and O/ by the usual
DTW procedure. Let o), m=1, 2, ..., T, be the vectors in sequence O, and o}, n=1, 2,
... T the vectors in sequence . Then we define D(O',0) as:

i 1 min o - j o (4)
D(O'0)=10 3 ol 0],

The mapping n(m) is constrained such that n(1)=1 and #(T;)= T, Thus, D{(¥,(0V} is the
average distance between corresponding observation vectors in the two sequences, after
the sequence O has been optimally warped on to the sequence O'. The search for the
optimal map is done, as usual, by a dynamic programming algorithm. In order to
minimize the effects of time quantization, both sequences are upsampled (by linear
interpolation), and they are both linearly warped to the same length before the DTW.
Also, as is usually done to avoid pathological mappings, the local slope of the map is
restricted to be between 0-5 and 2-0.
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Note that the definition of D in Equation (4) is not symmetric in its arguments.
However, in the present work, we always need the distances of various sequences from a
distinguished sequence. Therefore, we do not symmetrize the distance.

The minimization required to find the template according to Equation (2) is done by
exhaustive search. Thus, a particular sequence is selected, and the sum of its distances to
all other members of the ensemble is computed by using Equation {4). The process is
repeated for every member of the ensemble, and the one for which the sum is a
minimum, is chosen to be the template for the state g. As a mnemonic, let us denote the
length of O by T.

Once the template O of length T has been derived, we can derive a covariance matrix
@ for the state. To do this, let us warp each token O in the training data for the state,
to the template O, using the distance function defined in Equation (4). Let
0‘—[0,1,012, ,0},] be the time-warped sequence. Then we define @ to.be a 7 x T block
matrix, in wluch the mmnth block is a p X p matrix:

P =

mn

[ 1~

(0, —B,,)(0;,~3,), (5)
|

oy | —

i

where 7 is the number of tokens for the state available in the database.

In the next section it will be convenient to view @ in a different way. Suppose we define
along vector ¥ obtained by stacking (concatenating) the components of the observation
vectors of . Thus, ¥ is of dimension p7T'. Similarly, let us define ¥ by stacking the
observations of o', Then, clearly, an alternative representation for @ is:

i
=% Z —-PYV -7 (5a)

2.3. Probability density of a sequence conditioned on state

Let O={o,,0,,...,0,] be a given sequence of observations. Given that O was generated in
the state g, what is its conditional probability density p(O, TIstate = g)?

We will assign a meaning to this probability density only for the case where the
sequence Is the entire sequence generated in the state g, i.e. assuming the source enters
the state g with the observation o, and exits to some other state after generating the
sequence O. With this proviso, the probability density is a product of two factors, the
probability that the sequence has duration T, and the probability that the observation
sequence is the one specified. Thus:

PO, T|q)=p(O|T.g)p(dur = Tlg). (6)

In order to define the first factor on the right-hand side of Equation (6), we again use
dynamic time warping. Let O=[5,.8,,...,0,] be the template for the state g. Let O be the
sequence of T vectors obtained by warping O to the template Q. Then we postulate that
the components of ¥ are jointly Gaussian. (An extension to Gaussian mixtures is, of
course, possible.) The mean, u, of the Gaussian distribution is defined to be the vector F
obtained by similarly stacking the T observation vectors of the template, 0. The
covariance matrix, @, is the matrix @ defined in the previous section. Note that we view
O here as a pT x pT matrix, rather than as a block matrix.
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Although @ can be a full covariance matrix, we have so far restricted it to be block
diagonal, i.e. ,=0, i#/. This means that we assume the deviations of the observation
vectors from their means at any pair of time instants to be statistically independent.
However, we have experimented with various constrained forms for the diagonal blocks.
We have considered the diagonal blocks to be full covariance matrices, or diagonal
matrices. We have considered the blocks to be identical, or to have two possible values—
one for the first phoneme, p,, and a different one for the second phoneme, p,, of the
diphone p, p, corresponding to the state, etc. We will discuss the effects of such choices
in Section 3.

As for the duration probability density, we have for the present replaced it by a
penalty function which has the value 1 over the allowed range of durations, and 0
outside. The allowable range is taken to be v, 7 < T<y,T. Typically, we choose y,=0-5
and y,=2-0.

In summary, if g(.,p,®) is a pT-dimensional Gaussian density, with mean vector p
and covariance matrix @, then we define:

pOTIp=g(Vp,®), v T<T<y,T
={, otherwise, (N

where ¥ is the stacked vector defined above.

2.4, The stale transition probabilities

In the rest of the paper we will introduce a slight change in the meaning of the notation
S,, to reflect the difference between the traditional definition of a state and our state. S,
will still denote some state drawn from the set (. However, instead of denoting the state
of the Markov chain at time instant k, it will denote the kth state in some sequence of
non-stationary states, While in this state, the source might generate t, observations, in
which case the time index advances by t, time steps.

The fact that we have chosen diphones as our states, implies a certain inherent
syntactic constraint on possible state sequences, quite apart from any additional
grammatical constraints that might be imposed. Thus, if the diphone represented by
state g, is p,_p, and the diphone represented by state g, is p; p,, then:

a;= prob(S,,,= C]J-|Sk =g,
=0, unless p,=p,. ®)

For the state transitions which satisfy the constraint p,=p,, it is possible to estimate the
transition probabilities from the database. However, once the probabilities of the
forbidden transitions has been set to 0, we conjecture that it is not important to estimate
the exact probabilities of the remaining transitions. For the present we therefore assume
that all “legal” transitions from a state are equally probable,

2.5. Decoding ua test utterance

In this section we describe the procedure used to decode an unknown test utterance Q,
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assuming that all the templates and covariance matrices for the states have already been
derived. By decoding we mean inferring the sequence of states of the underlying Markov
chain, which generated the given sequence (. We do this by finding the maximum
likelihood segmentation of the sequence.

To explain our procedure, suppose we postulate a segmentation of O into M
contiguous segments O,, O,, .. ., 0. Let 1=(1,,T,,...,T,) be the vector of durations of
these segments, and let S=385,, §,, ..., S, be the corresponding sequence of states in
which the segments were generated. Also, let S;=g,€Q. Then, for this hypothesized
segmentation, the log likelihood L may be written as:

M
L{S,7)= Z [loga,_,,+(t/ T;,() log p(O,,7; 191, )
k=1

where the probability p(.) is given in Equation (7). This is the usual definition of log
likelihood, except for the normalization factor (t,/T,). Our rationale for using this
factor is as follows: the quantity p(.) is a joint Gaussian distribution of T vectors. Thus,
division by T} gives the log likelihood per observation vector. And multiplication by 1,
gives the total log likelihood for the 1, observations in the segment, We tried several
modifications of this normalization factor, but this one gave the best performance.
The deceding is obtained by finding (S,t) which maximize L. (For speech recognition
only the state sequence is of interest, although, of course, the maximization must be over
both S and t. For applications to segmentation, the durations too are of interest.)
The maximization can be performed by a dynamic program which is quite analogous
to that given in Levinson (1986), so we will not detail it here. Note, that in view of
Equations (7) and (8), only the allowed durations and transitions need be searched.

3. Experimental results

In this section we will describe the results of some recognition experiments which we
have conducted with recognizers of the type described in the previous sections. We
conducted two sets of experiments using two different databases. In the first set of
experiments, described in Section 3.1, we compared the performance of the proposed
HMM to that of a traditional HMM using the same database (termed KBDY) and
analysis conditions. In Section 3.2 we describe a second set of experiments, aimed at
studying the effects of various assumptions of our model. These experiments were
conducted on a different database (termed KBB).

Each of the databases consists of some 2000 sentences, spoken fluently by the same
male speaker (K, B. Bauer). We were forced to use two different databases for a practical
reason: in the initial stage of our study, only database KBDY was available, Database
KBB, which has a much larger number of labeled segments, was generated only at a later
stage. Unfortunately, the recording conditions for the two databases, though similar,
were not identical. This prevented us from merging the two when database KBB became
available.

The 2000 sentences of the KBB database include the 450 TIMIT sentences, about 470
sentences composed to cover all dyads, and about 80 long sentences incorporating
syntactic and prosodic variations.

*For k=1, the term a,, is to be interpreted as the probability of initially choosing the state ¢,.
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Both databases were processed similarly, using the analysis conditions described in
Section 2.1. Templates, for both databases, were derived in the manner described in
Section 2.2.

3.1. Preliminary experiment

In this experiment we compared the performance of our recognizer with the performance
of a base-line recognizer, using database KBDY. The method we used to measure the
performance of our recognizer is discussed first, followed by the results for the base-line
system.

We decided to consider only those diphones for which we found at least three tokens
in the database. For the KBDY database, we have obtained such ensembles for 976
different diphones. The number of tokens in any such ensemble is between 3 and 47, with
an average of 16. For each of these ensembles we derived a template in the manner
described in Section 2.2. The observation vectors, which were derived in the manner
described in Section 2.1, included energy which was averaged over a 30 ms window.

For the probability distribution, as mentioned in Section 2.3, we assume the
covariance matrix @ to be block diagonal. However, we estimated full covariance
matrices for the diagonal blocks, For 274 of the 976 states, we estimated two state-
dependent matrices, one for the first phoneme and one for the second phoneme of the
diphone. For the remaining states we did not have an adequate number of tokens to
derive state-dependent covariance matrices. For these states we used a “prototype”
matrix for each phoneme in the diphone. The prototypes were computed by pooling
tokens of structurally similar diphones. Thus, two matrices were computed from the
pooled data for all vowel-vowel diphones, two from the pooled data for all vowel-
consonant diphones, etc.

Once all the states had been derived, the model was tested on a set of 30 sentences
which were not part of the training data. These sentences were also hand-labeled by J. P,
Olive. To test the accuracy of the transcriptions, the recognized sequence of diphones
was first (trivially) converted to a string of phonemes by applying the syntactic
constraint mentioned in Section 2.4. Each recognized phoneme string was aligned to the
corresponding hand-labeled string for minimum Levenshtein distance. (That is, the
alignment that minimized the total number of deletions + substitutions+ insertions.)
From the aligned sequences we determined the number of correctly recognized pho-
nemes, C, the number of insertions, /, and the number of deletions, D. The recognizer
may be scored as follows:

% correct=100x C/R {10a)
% insert=100x [/R (10b)
% delet=100x D/R, (10c)

where R is the total number of phonemes in the test sentences. For the 30 test sentences,
R=518,

Before presenting the scores obtained, we must address one complication that arises
due to diphones that appear in the test data, but for which we have not yet derived states.
In the test sentences, ““schwa™ and “R™ appear a total of 67 times; however, these
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phonemes were not labeled in the database. So we do not have states corresponding to
the diphones involving these phonemes. We can do one of three things: (i) assume these
missing diphones would have been all incorrectly recognized; (ii) ignore the missing
diphones altogether (i.¢. assume they were not present in the input string); or (iii) assume
they would all have been correctly recognized. The top rows on the lefi-hand side of
Tables II, IIT and IV, respectively, show the scores obtained under each of these
assumptions.

It would, of course, be preferable to derive a state for “schwa’ and show a single result
instead of three. There is, however, a genuine difficulty. The reason why “schwa’ was
not labeled in the training data is that it cannot be labeled reliably in fluent speech. The
same is true of several other ambiguities in fluent speech which we will discuss later, in
Section 3.3. There we will argue that the segmentation should be in terms of “equiva-
lence classes™, and that the ambiguities within the classes should be resolved on the basis
of context, grammatical constraints, etc. As will be seen in Section 3.3, with that
modification, we no longer need special consideration for unlabeled states.

TasLE II. New HMM vs. base-line HMM, “R” and ‘“‘schwa” assumed wrong, database KBDY

Equation (10) Equation {11)
Per cent Per cent Per cent Per cent Per cent Per cent
correct insert delet correct insert delet
New HMM 610 20-5 37 50-6 17-0 30
Base-line HMM 554 48-8 31 372 32-8 21

TasLE III. New HMM vs. base-line HMM, “R™ and “schwa” ignored, database KBDY

Equation (10) Equation {11}
Per cent Per cent Per cent Per cent Per cent Per cent
correct insert delet correct insert delet
New HMM 70-1 235 4.2 56-7 19-0 34
Base-line HMM 63-6 56-1 35 408 359 23

TasLs IV, New HMM vs. base-line HMM, “R” and *‘schwa” assumed correct, database

KBDY
Equation (10} Equation (11)
Per cent  Per cent Per cent Percent  Percent  Per cent
correct insert delet correct insert delet
New HMM 739 205 37 614 17:0

3
Base-line HMM 683 488 31 45-9 328 2-
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The percentage of correctly recognized phonemes given by Equation (10a) is a
reasonable measure of performance if one assumes that insertions can be eliminated by
the lexical access stage of the recognizer. However, it is clearly not an accurate reflection
of the performance of the recognizer, because with a sufficient number of insertions the
score can be made 100%. A better procedure is to express quantities as a percentage of
{(R+I). Thus, we may define;

% correct=100x C/{R+1) (11a)
% insert= 100 x I[/(R+1) (1ib)
% delet = 100 x D/(R+ D). (11c)

The top rows on the right-hand side of Tables II, ITI, IV, respectively, present results
according to these equations.

For comparison, we ran a modified version of the “phonetic recognizer” of Levinson
(1986) using the same database, KBDY. In the modified version, the basic unit is a
phoneme (47 phonemes, shown in Table [, were used); each phoneme was represented by
47 conditional probability densities for the observations (taking left context into
account), and 47 conditional probability densities for the durations. The observation
vectors were the cepstra plus delta—cepstra and energy plus delta—energy (with a window
of five frames). The analysis conditions were as mentioned in Section 2.1: an LPC-based
cepstrum analysis was performed on each sentence in the database. The LPC order was
12; the order of the cepstrum vectors obtained from these LPC vectors was 11. The
window length was 30 ms, and the overlap between successive windows was 10 ms.
Energy was averaged over a 30 ms window.

The results of this experiment are shown on the bottom rows of Tables II, ITI, IV,
computed according to Equations (10) and (11}, respectively. A comparison of corres-
ponding entries in the top and bottom rows of these tables shows that with either
measure of performance, our recognizer gives significantly more correct phonemes and
significantly fewer insertions than the recognizer of Levinson (1986).

3.2. Derailed experiment

In this section we conducted a series of experiments aimed at studying how the
performance of our recognizer depends on the statistical complexity of the state models.
The performance of the recognizer was measured in the manner described in Section 3.1,

We decided to consider only those diphones for which we found at least three tokens
in the database. For the KBB database, we obtained such ensembles for 948 different
diphones. The number of tokens in any such ensemble is between 3 and 79, with an
average of 37. For cach of these ensembles we derived a template in the manner
described in Section 2.2. The observation vectors, which were derived in the manner
described in Section 2.1, included energy, which was averaged over a 10 ms window.

We derived five different non-stationary HMMs based on these states. The models
differ in the assumptions concerning the covariance matrix @ for each state. As before
we assume @ to be block diagonal, so each model is completely specified by the diagonal
blocks @, We have considered the following types of matrices:
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(2) In the first model we assumed @, = o’I, where 1 is the identity matrix. We used the
same value of o for all the states, and for all the diagonal blocks. This value
(about 0-04) was the average variance of a cepstral coefficient over all the data.

(b} In the second model we assumed @, to be a diagonal matrix. The matrix was
assumed to be constant for each phoneme of the diphone. These matrices were
prototype matrices, derived by pooling data from structurally similar diphones, as
described in the preliminary experiment. Thus, eight different prototype diagonal
matrices were estimated—two for vowel-vowel diphones, two for vowel-conson-
ant diphones, etc.

{c} In the third model we improved on model (b) by estimating state-dependent
cdiagonal matrices for each of 293 states. For these states, we estimated two state-
dependent matrices, one for the first phoneme and one for the second phoneme of
the diphone. For the rest of the states, as in the preliminary experiment, we used
prototype matrices.

(d) This model was the same as model (b), except the eight prototype matrices were
Jull px p matrices.

(e) Finally, we improved on model (d) by estimating state-dependen: full covariance
matrices for each of 293 states. For the rest of the states, as in the preliminary
experiment, we used prototype matrices.

Each of these models was used to decode a set of 50 sentences outside the training set,
using exactly the same procedure as outlined in Section 3.1. The 50 test sentences are the
Harvard PB (phonetically balanced) sentence list. The hand-labeled transcription of
these test sentences had 1225 phonemes, and the phonemes “‘schwa” and “R” appeared
a total of 161 times.

Tables V, VI and VII give the results of these experiments. Comparison of the
corresponding entries in these tables shows that the first four assumptions about the
covariance matrices lead to essentially the same performance. The full covariance state-
dependent matrices give the best results. Derivation of such matrices for all the states
should improve the recognition accuracy.

3.3. Equivalence classes

Some phonemes, in certain contexts, have such similar spectra that one might consider a
recognition scheme in which the phoneme decoder identifies only the *“‘confusable
group”, or equivalence class, to which a phoneme belongs. Subsequent processing counld
disambiguate the recognized phoneme string, on the basis of context, or grammatical
constraints, etc. We believe that this might be a good strategy, especially for fluent
speech.

Hypothesizing such a recognizer, it is of interest to evaluate the error rate of our
transcriptions on the assumption that a recognized phoneme is correct if its equivalence
class is correctly identified.

Table VIII was compiled for us by J. P. Olive, and gives a list of phonemes that are
exchangeable in the sense described above. Based on this table, we modified the
alignment procedure mentioned in Section 3.1 to score the correctness of equivalence
classes rather than phonemes. The results of such an alignment are shown in Tables IX
and X. Note that since “schwa” and “R” are equivalent to other phonemes, we do not
treat them differently from other phonemes in this alignment procedure.
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TasLE VIII. Equivalence classes for phonemes

Phoneme Equivalents Phoneme Equivalents
£ z e, o h

3 oY, a, A 5 t

a a¥, A, af T ¢

u U, W Z s

& r 3 |

a a l,a ¢ I

e Ii j 3

av a, AU, 0 e f, 8

) I,e, o, A i) ]

I E, 8%, 3 f 8,Vv,p

® € v b,w, f

A a, a%, a%, 2 m v,b.n

U u, a%, a n ,d,8, m
¥ 9,1 I ng

1 y p f,v,b

o¥ 2,U,U 1 s, d

1 w k g

r x b vV, W, p, m
w 1, u, u, a%, o¥ d t,n

y i g n k

As expected, the error rates are substantially lower than those for the strict alignment.
However, the ordering of the entries remains unchanged.

4, Future directions

One of our major future goals is to remove the (femporary) restriction of the covariance
matrix @ to block diagonal. As discussed in the Introduction, a full covariance matrix
would completely account for the statistical dependence on each other of all the
observations in a state.

Another objective is to make the recognizer speaker-independent. For such a task, the
state would undoubtedly have to be represented by more than one template.

Both these objectives require much more data than we have at present. The extension
to a full covariance matrix might stitl be possible by additional labeling of data for one

TasLe IX. New HMM vs. base-line HMM, using a modified Levinshtein measure, database

KBDY
Equation (10) Equation (11)
Per cent Per cent Per cent Per cent Per cent Per cent
correct insert delet correct insert delet
New HMM 73-9 21-2 4-0 61-0 17-5 37

Base-line HMM 70-5 492 35 472 330 23
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speaker. However, it is much more desirable to have some automatic (or semi-
automatic) means to collect the data. For this, we can think of several possibilities. One,
for example, is to use the states derived from hand-segmented data to segment data with
a known transcription automaticaily. This can be iterated to improve the statistical
representation of our states (Lee er al., 1990). Other possibilities are extensions of
automatic segmentation techniques used for deriving “‘phoneme-like” units, ¢.g. the one
given in Lee et al. (1990).

We would like to express our sincere thanks to J. P. Olive, for not only providing us with his
labeled databases, but also for many discussions and suggestions during the course of this work.
We would also like to thank Roberto Pieraccini for supplying us with a program for aligning
symbol sequences. A slightly modified version of his program was used in the evaluation of
transcriptions described in Section 3. Thanks also to Andrej Ljolje for providing us with a
prograi for the left-context dependent version of Levinson (1986). A slightly modified version of
his program was used to measure the performance of the base-line system.
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